• Sunday,September 22,2024
ururembotoursandtravel.com
X

Integrating genome-wide association study with transcriptomic data

$ 24.00

4.8 (567) In stock

Share

Background Rapeseed (Brassica napus L.) is an essential source of edible oil and livestock feed, as well as a promising source of biofuel. Breeding crops with an ideal root system architecture (RSA) for high phosphorus use efficiency (PUE) is an effective way to reduce the use of phosphate fertilizers. However, the genetic mechanisms that underpin PUE in rapeseed remain elusive. To address this, we conducted a genome-wide association study (GWAS) in 327 rapeseed accessions to elucidate the genetic variability of 13 root and biomass traits under low phosphorus (LP; 0.01 mM P +). Furthermore, RNA-sequencing was performed in root among high/low phosphorus efficient groups (HP1/LP1) and high/low phosphorus stress tolerance groups (HP2/LP2) at two-time points under control and P-stress conditions. Results Significant variations were observed in all measured traits, with heritabilities ranging from 0.47 to 0.72, and significant correlations were found between most of the traits. There were 39 significant trait–SNP associations and 31 suggestive associations, which integrated into 11 valid quantitative trait loci (QTL) clusters, explaining 4.24–24.43% of the phenotypic variance observed. In total, RNA-seq identified 692, 1076, 648, and 934 differentially expressed genes (DEGs) specific to HP1/LP1 and HP2/LP2 under P-stress and control conditions, respectively, while 761 and 860 DEGs common for HP1/LP1 and HP2/LP2 under both conditions. An integrated approach of GWAS, weighted co-expression network, and differential expression analysis identified 12 genes associated with root growth and development under LP stress. In this study, six genes (BnaA04g23490D, BnaA09g08440D, BnaA09g04320D, BnaA09g04350D, BnaA09g04930D, BnaA09g09290D) that showed differential expression were identified as promising candidate genes for the target traits. Conclusion 11 QTL clusters and 12 candidate genes associated with root and development under LP stress were identified in this study. Our study's phenotypic and genetic information may be exploited for genetic improvement of root traits to increase PUE in rapeseed.

Genome-wide meta-analysis and omics integration identifies novel

Multi-omics integration analysis identifies novel genes for

MOSTWAS: Multi-Omic Strategies for Transcriptome-Wide Association

Significant SNPs detected in NT condition. NT represents normal

Transcriptome- and proteome-wide association studies nominate

IJMS, Free Full-Text

Opportunities and challenges for transcriptome-wide association

Genome-Wide Association Study (GWAS) for Plant Breeding - Lifeasible

Genetics of osteoporosis: searching for candidate genes for bone fragility - Archives of Endocrinology and Metabolism

Genetic variation for root architectural traits in response to phosphorus deficiency in mungbean at the seedling stage. - Abstract - Europe PMC

Genome-wide association studies

High‐resolution transcriptomic and epigenetic profiling identifies